
18th Australasian Fluid Mechanics Conference
Launceston, Australia
3-7 December 2012

Computational Stability Analysis of a Channel Flow with a Large Deformation Compliant Insert

L.S.H. Lai1, A.D. Lucey1 and N.S.J. Elliott1

1Fluid Dynamics Research Group
Curtin University, Perth, Western Australia 6845, Australia

Abstract

We consider a fluid-conveying channel with a compliant in-
sert, or wall, undergoing flow-induced deformations. The ob-
jective is to understand the mechanism that can cause self-
excited oscillations of a fundamental system that underpins a
host of both engineered (e.g. flexible-pipes, membrane filters)
and biomechanical (e.g. blood flow, airway flow) applications.
The computational model is developed using the open-source
fluid-structure interaction software oomph-lib that accounts for
unsteady laminar flow interacting with large-amplitude defor-
mations of a thin flexible wall. The fluid loading on the compli-
ant wall comprises both pressure and viscous stresses while the
wall mechanics includes flexural and tensile forces. The discre-
tised equations for the coupled fluid and structural dynamics are
combined to yield a single monolithic matrix differential equa-
tion for fluid and wall variables, which is solved through a time-
stepping procedure. We present a brief summary of validations
performed that demonstrate the appropriateness of oomph-lib
as a modelling tool for the system. Cases are then presented
to contrast the system in stable and unstable conditions and
we offer an explanation of the physical causes of non-linear
saturated oscillation by examining the nature of wall deforma-
tions and their effect on the pressure gradient along the wall.
We surmise that instability occurs principally through fluctuat-
ing energy transfers between wall and fluid that are driven by
separation-point changes over each cycle of oscillation.

Introduction

The occurrence of flutter of a fluid-conveying flexible pipe with
fixed ends is a significant fundamental phenomenon. It has
many biomechanical applications because flexible conduits are
common in the human body; examples of these are arterial, ve-
nous, lymphatic, pulmonary airway and urinary systems [1].
The dynamics of fluid-conveying flexible pipes have been com-
prehensively studied through laboratory experiments using the
Starling Resistor paradigm; for example see [2]. Modelling of
the system dynamics was first undertaken by Pedley [3], us-
ing the simplified two-dimensional analogue model of Figure 1
that consists of a 2-dimensional (2-d) channel with one seg-
ment of the wall replaced by a membrane under longitudinal
tension. This remains an important model because it avoids the
complications of the fully 3-d flow found in the Starling Resis-
tor while exhibiting flow limitation and self-excited oscillations
[4]. Significant progress has been made towards understanding
the complex stability characteristics of this simplified model,
especially through the recent numerical work of Luo & Pedley
[5, 6, 7] using an in-house code.

The present paper outlines a complementary approach that uses
the open-source object-oriented multiphysics finite element li-
brary oomph-lib [8]. Liu et al. [9] show that the system dy-
namics can be sensitive to the modelling adopted. Our approach
then offers a further independent assessment of this variability.
In addition, the access and versatility provided by oomph-lib
permits us to conduct investigations of the causes of self-excited
oscillations. Thus, the main contribution of this paper is to high-
light, by contrasting two typical cases, one stable and the other
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Figure 1: Geometry of the 2-d channel with complaint insert

unstable, the principal phenomena that underlie the mechanism
of self-excited oscillations in the system.

Theoretical and Computational Modelling

Figure 1 shows the major geometrical parameters of the model.
Variables identified with asterisks are dimensional and those
without are nondimensional. Fluid flow is driven by a pre-
scribed Poiseuille velocity profile at the inlet of the 2-d channel
of width H∗, the characteristic length used for nondimensional-
isation, and total length L∗total; the channel Eulerian coordinates
(x∗,y∗) have their origin at the lower left corner of the chan-
nel. The total length is the sum of the upstream length L∗up,
flexible section length L∗flex, and downstream length L∗down. The
upstream and downstream sections are rigid, and the central sec-
tion is an elastic plate hinged at both ends.

We now provide only a brief summary of the governing equa-
tions because the general formulation is provided in [4]. Its
application to the specific problem at hand is in our previous
work [10, 11] wherein it is seen that, for a given wall geometry,
the non-dimensional solution space is governed by two param-
eters. These are the Reynolds number, Re = ρ∗U∗meanH∗/µ∗,
and the ratio of viscous-fluid to elastic-solid stresses, Q =
[µ∗U∗mean/H∗]/E∗eff, in which ρ∗, U∗mean and µ∗ are respectively
the fluid density, mean flow speed (at entry) and dynamic vis-
cosity, while E∗eff is the effective (accounting for Poisson ratio)
elastic modulus.

The Newtonian fluid is governed by the incompressible Navier-
Stokes equations and continuity equation. The boundary condi-
tions are that the inflow has a plane Poiseuille velocity profile
(with mean speed U∗mean) and no slip is enforced on both rigid
and flexible walls. The pressure at the outlet is set to zero and
this serves as the datum for the applied external pressure, P∗ext,
and the pressure perturbation added to this to initiate motion of
the wall.

The beam deformation is governed by the nondimensional form
of the principle of virtual displacements.

The wall is loaded by an external pressure Pext and the traction
that the fluid exerts on it. The components of load vector f that



act on the wall are given by

fi =−PextNi +Q
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for i, j = 1,2, where Ni are the Eulerian components of the outer
unit normal on the boundary of the fluid domain. Q quantifies
the strength of the fluid-structure interaction (FSI).

Numerical Implementation

The solution procedure is formulated using oomph-lib. Two-
node Hermite beam elements are used for the Kirchoff-Love
1-d beam, which are geometrically nonlinear with incremen-
tally linear constitutive equations, while nine-node quadrilateral
Taylor-Hood elements are used for the fluid. Nodal positions
are updated in response to the changes in the flexible-wall po-
sition as it deforms. Time-stepping is performed using a New-
mark scheme for the solid and a backward difference scheme for
the fluid. The solid and fluid components are assembled into a
monolithic nonlinear FSI system equation that is solved using
the Newton-Raphson method, employing the SuperLU direct
linear solver within the Newton iteration.

Startup Procedure

A fully-developed viscous flow passes through the channel at
the start of a simulation by specifying the mean inlet veloc-
ity Uinlet. Linearly varying external pressure is then applied to
negate the pressure due to the fluid flow and thus maintain the
wall in the as-undeformed state. This external pressure is then
gradually removed whilst two new uniform external pressures
are applied. The first, Pext, is applied to give the flexible wall
a deformed mean shape. The second is a perturbation pressure,
Ppturb, to excite the system. After a small number of time-steps
Ppturb is removed and the system becomes unsteady.

Parameter Values

The system parameters for the two cases addressed in this pa-
per are given in Table 1. The dimensional quantities give an
appreciation of the physical scales of the problem; the non-
dimensional quantities characterise the mean amplitude of the
FSI-based wall deformation. These were chosen to align ex-
actly with the simulations of Cases A and C in the study of Liu
et al. [9] as a validation exercise for the present model. Herein,
we refer to these as Case I and Case II that respectively charac-
terise stable and unstable behaviours about the mean wall defor-
mation. Both cases comprise a water-like fluid density flowing
past a rubber-type flexible wall that has no pre-stress. We use a
massless (zero density) flexible wall, our previous work having
shown that under these conditions the wall inertia is negligible
compared to that of the fluid.

Results

Figures 2a and 2b respectively show the wall profile, y (=
y∗/H∗), and the pressure distribution, p (= p∗/[µ∗U∗/H∗]),
along the wall for the equilibrium states that arise for Cases I
and II prior to a perturbation being applied. Despite its higher
flow speed (Re), the much lower value of Q — that can be in-
terpreted as the ratio of the fluid loading to wall stiffness —
in Case II results in both a much lower wall-deflection ampli-
tude and a mode shape similar to that of the wall’s in-vacuo
fundamental mode, as compared with Case I. Significantly, this
yields a far milder adverse pressure gradient downstream of the
peak amplitude and the absence of flow separation in Fig. 2b.
By contrast Case I evidences an extreme pressure gradient with
(steady) separation occurring at approximately x = 9.3. Apply-
ing a perturbation to these equilibria leads to the time series

Table 1: Dimensional (upper) and non-dimensional control
(lower) parameter values for the two cases studied

Parameter Value
Case I (Unstable) Case II (Stable)

L∗up (mm) 50 50
L∗flex (mm) 50 50

L∗down (mm) 300 300
H∗ (mm) 10 10
h∗ (mm) 0.1251 0.1254

ρ∗f (×103 kg/m3) 1 1
µ∗ (×10−3 Pa.s) 1 1

U∗inlet (×10−2 m/s) 3 5
B∗ (×10−9N.m) 1.6292 78.62

P∗ext (Pa) −4.255 −4.875
Ppturb∗ (×10−2 Pa) 50 15.8

Re 300 500
Q (×10−7) 2.9986 0.1045

seen in Fig. 3. Oscillations are quickly attenuated in Case II.
In contrast, Case I exhibits evolving transient oscillations that
evolve into sustained self-excited limit-cycle oscillations after
approximately t = 150. These results indicate that flow sepa-
ration must be implicated in the mechanism of sustained oscil-
lations. We also remark that these time series evidence excel-
lent agreement with the ADINA-modelling results presented in
[9]. It also serves to validate the present model along with our
previous extensive validations of the system’s component parts
[10, 11].

We now focus on the details of Case I in order to elucidate the
physics of its sustained self-excited oscillations by investigat-
ing one cycle of oscillation, t : 193.2→ 200.7, in Fig. 3. Fig-
ures 4a and 4b respectively show snap-shots of the flexible-wall
profile and the fluid pressure along the profile for a sequence
of equally-separated times through the cycle; also included in
these figures are the equilibrium values for Case I presented in
Figs. 2a and 2b. Figure 5 shows the instantaneous flow fields for
the same cycle and at the same times. In Fig. 4a, the change in
wall length corresponds to the variation (about its steady equi-
librium value) of the wall force through the cycle given that this
is dominated by induced tension for the physical properties used
herein. At its smallest amplitude in the cycle, the external pres-
sure, combined with a reduced internal pressure on the upstream
face of the deformation, act to restore the wall to its equilibrium
position. At the largest amplitude it is the wall tension com-
bined with an increased internal pressure on the upstream face
that provides a net force returning the wall to the equilibrium
position. Accordingly, a system of forcing that permits oscilla-
tory behaviour is set up. However, this in itself does not explain
the sustained oscillations given that the FSI system is dissipa-
tive through viscous effects in the fluid. There must therefore be
an energy-exchange mechanism between the wall and the fluid
flow that has a continuous upstream supply of kinetic energy
and a means of convecting out energy from the site of the FSI.

Figure 6 therefore presents the time variation of the rate of en-
ergy transfer to/from the wall by the fluid flow for each of its
four quartiles. This is obtained by summing the scalar prod-
uct of the pressure force and the wall velocity over the length of
each quartile. We do not need to consider the corresponding rate
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Figure 2: (a) Profile of and (b) pressure distribution along the
flexible wall in the steady state.

of work against the external pressure because this force does not
provide a means of irreversible energy transfer; it can be con-
sidered analogous to an external spring backing to the wall. We
first remark that the addition of the four traces — a sum over
the entire wall — in Fig. 6 (dashed line) yields a periodic sig-
nal with zero time average because there cannot be net energy
transfer to the wall in a limit-cycle oscillation. However, there is
a periodic fluctuation of energy transfer between wall and fluid
and the greatest component of this arises from the fourth quar-
tile that includes the flow-separation zone. Here, for motion in
the cycle when the wall amplitude exceeds that of the steady
equilibrium position, it is from wall to fluid while an equivalent
and opposite energy flow occurs in the other half of the cycle.
Inspection of Fig. 4b suggests that this cyclical energy flow is
caused by the fore and aft variation of the separation point from
that in the steady equilibrium state.
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Figure 3: Oscillation of the flexible wall midpoint.
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Figure 4: The variation in (a) wall profile and (b) fluid pressure
along the flexible wall during one oscillation cycle.
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Figure 5: Fluid streamlines over one oscillation cycle; (a)
t=193.2, (b) t=194.7, (c) t=196.2, (d) t=197.7, (e) t=199.2, (f)
t=200.7.
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Figure 6: Rate of work in quartiles of the flexible wall for one
oscillation.

Conclusions

We have presented a computational model of unsteady laminar
flow in a plane channel interacting with a compliant wall re-
placing a section of one side of the channel and used this to
investigate the sustained self-excited oscillations that are found
to occur about a large-amplitude deformed-wall state. Our find-
ings suggest that the cyclical variation of the flow-separation
point is the main cause of fluctuating energy transfers between
wall and flow that permit the limit-cycle oscillations of the flex-
ible wall to exist.
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